

ЧАРГАФФСЬКІ ЧИТАННЯ

Матеріали
XX Міжнародної наукової
конференції

Чернівці
2025

Yuriy Fedkovych Chernivtsi National University
Institute of Biology, Chemistry and Bioresources
Vavilov Society of Geneticists and Breeders of Ukraine
Ukrainian Association of Plant Biologists

CHARGAFF READINGS

**Materials of the XX International Scientific Conference
dedicated to the 150th anniversary
of Yuriy Fedkovych Chernivtsi National University
and the 120th anniversary of Erwin Chargaff's birth**

*October 27-30, 2025
Chernivtsi, Ukraine*

Chernivtsi

Yuriy Fedkovych Chernivtsi
National University

2025

Published by decision of the Scientific and Technical Council of
Yuriy Fedkovych Chernivtsi National University
(Protocol No 16-9 from November 20, 2025)

Editorial board:

Prof. Dr. Roman Volkov, editor-in-chief
Dr. Yuriy Khalavka, deputy editor
Prof. Dr. Illia Chorney
Prof. Dr. Irina Panchuk
Dr. Antonina Shelyfist

Chargaff Readings: Materials of the XX International Scientific Conference dedicated to the 150th anniversary of Yuriy Fedkovych Chernivtsi National University and the 120th anniversary of Erwin Chargaff's birth, October 27-30, 2025, Chernivtsi, Ukraine. Chernivtsi : Yuriy Fedkovych Chernivtsi National University, 2025. 276 p.

ISBN 978-617-8703-31-8

The volume brings together current research across the fields of general genetics, molecular genomics and bioinformatics, microbiology and biotechnology, botany and plant biology, zoology and animal biology, medical genetics and human biology, as well as studies on biologically active substances. The book features contributions from scientists representing Ukraine, the Czech Republic, Germany, Moldova, Poland, Slovakia and Sweden.

Abstracts are published as submitted by the authors.

ISBN 978-617-8703-31-8

© Yuriy Fedkovych Chernivtsi
National University, 2025

RANGE SIMULATION OF *REYNOUTRIA × BOHEMICA* CHRTEK & CHRTKOVÁ IN UKRAINE

V.V. Budzhak^{1,2,3}, M.V. Shevera⁴, T.V. Budzhak⁵, A.Y. Shelyfist⁵, R.A. Volkov⁵

¹ National Academy of Sciences of Ukraine, Institute for Evolutionary Ecology, Kyiv, Ukraine

² National Academy of Agrarian Sciences of Ukraine, Falz-Fein Biosphere Reserve «Askania Nova», Kyiv, Ukraine

³ National University of Kyiv-Mohyla Academy, Kyiv, Ukraine

⁴ M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine

⁵ Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine

Distribution of invasive plant species is a major threat to biodiversity, ecosystem services and sustainable development. In particular, a special place is occupied by the *Reynoutria × bohemica* hybrid, which comes from the crossing of *R. japonica* and *R. sachalinensis*. High plasticity, the ability to form dense thickets and effectively displace native species make this taxon one of the most aggressive invasive weeds in Europe. In Ukraine, its distribution has been recorded in many regions, but the dynamics of the range and the factors that determine its expansion remain insufficiently studied. In this context, forecasting potential distribution areas in the future, taking into account climate change, is of particular importance.

To analyze the potential distribution of *R. × bohemica*, the MaxEnt algorithm (Maximum Entropy Modeling) was used, which has established itself as one of the most accurate methods for species distribution modeling (SDM). Unlike traditional statistical approaches, it operates exclusively with points of presence of the species and a set of bioclimatic variables, which makes it especially valuable for the study of invasive species. Our study used 806 georeferenced registrations of the species from various sources: herbarium funds, online databases (GBIF, iNaturalist, UkrBin), as well as scientific publications.

Bioclimatic predictors (bio1–bio19) were obtained from the WorldClim database. The global climate model (GCM) MPI-ESM1-2-HR and the Shared Socioeconomic Pathway SSP2-4.5 were used to build models of future distribution. Spatial modeling was carried out for two time slots: 2021–2040 and 2041–2060. To assess the accuracy of the models, the data was divided into a training (75%) and a test (25%) sample. The AUC values (Area Under the Curve) were 0.992 for the training dataset and 0.991 for the test dataset, indicating the extremely high quality of the predictions.

The analysis of the contribution of environmental variables showed that the key predictors were: the precipitation of the driest month (bio_14), the minimum temperature of the coldest month (bio_6) and the temperature seasonality (bio_4). In particular, bio_14 consistently showed the largest contribution to the explanation of variation (42–47%), confirming the crucial role of water scarcity in the survival and dispersal of the species. The minimum temperature of the coldest month (bio_6) ranked second in importance (up to 23.6% in mid-century scenarios), emphasizing the importance of winter climatic conditions for the survival of underground organs of the plant. Although the temperature seasonality (bio_4) had a slightly smaller contribution (about 10–12%), still it reflected the significant influence of the amplitude of temperature fluctuations on the life cycle of the hybrid.

Spatial models showed that in the short term (2021–2040) *R. × bohemica* will continue to expand its range in the northern, northeastern and central directions. A high probability of species

presence is predicted for the Forest-Steppe zone, the northern part of the Steppe and most of Polissya. At the same time, in the southern regions, especially in the zone of arid steppes and the Black Sea region, the suitability of the environment will gradually decrease. In the long term (2041-2060), there will be a certain narrowing of the range in the southeastern regions and a partial return of the distribution boundaries to modern ones. However, areas with a high probability of presence ($p>0.7$) will increase by mid-century, posing potential risks to natural ecosystems and agricultural landscapes.

An important aspect of the work was the use of multivariate data analysis (PCA and K-means clustering methods), which made it possible to confirm the identification of bioclimatic variables that are of utmost significance for the invasive process. This enhances the reliability of the results and enables a deeper environmental interpretation of the model.

The results obtained have an applied value. They give grounds for highlighting high-risk regions, where it is advisable to focus monitoring and biosecurity measures. In particular, attention should be paid to controlling soil translocation and plant residues, limiting the ornamental use of the species, and implementing integrated management programs in places where it has already formed stable populations.

In general, the results of our study demonstrate that the combination of the MaxEnt algorithm with multivariate data analysis methods is an effective tool for predicting the spatial dynamics of invasive species in the context of climate change. For *R. × bohemica*, the determining factors of distribution in Ukraine are the rainfall regime and winter temperatures. Taking these factors into account makes it possible to predict the further species expansion and to formulate adequate biosecurity measures adapted to the conditions of different regions of the country.