FURTHER TRANSFERS OF GLANDULAR-PUBESCENT SPECIES FROM
CHENOPODIUM SUBG. AMBROSIA TO DYSPHANIA (CHENOPODIACEAE)

Sergei L. Mysyakin
M.S. Khododny Institute of Botany
National Academy of Sciences of Ukraine
2 Teschenkivska Street, Kiev 01601 UKRAINE

Steven E. Clemants
Brooklyn Botanic Garden
1000 Washington Ave.
Brooklyn, New York 11215 U.S.A.

ABSTRACT

RESUMEN

INTRODUCTION
The genus Chenopodium L. (Chenopodiaceae) in its traditional wide circumscription has long been suspected to be an unnatural (polyphyletic or paraphyletic) union of taxa belonging to different phylogenetic lineages. Consequently, many segregate genera and infrageneric taxa of various ranks were described and accepted within this group by various authors (see an overview in Scott, 1978). The genus Dysphania R. Br. during its turbulent taxonomic and nomenclatural history also experienced numerous shifts: from a single genus of a separate family Dysphaniaceae (Pax & Hoffmann 1934) or a representative of Illiciaceae or Caryophyllaceae—to a mere section of Chenopodium s.l. (Aellen 1930a, 1930b; see also discussion in: Eickart 1967, Mabry & Behnke 1976; Scott 1978; Wilson 1983, 1984; Mysyakin & Clemants 2002, and references therein). The present article continues a series of our publications (Mysyakin 1993; Mysyakin & Clemants 1996, 2002; Clemants & Mysyakin 2003) on Chenopodium L. s.l. and its segregates.

Earlier (Mysyakin & Clemants 2002) we justified the transfer of species previously placed in Chenopodium L. subg. Ambrosia A.J. Scott, commonly called and henceforth referred to as glandular chenopods, to the genus Dysphania, and validated new taxonomic combinations in preparation for the treatment of the genus in Flora of North America north of Mexico (Clemants & Mysyakin 2003). At that time we made 18 new combinations, including 11 at the species level, 4 at the section level, and 3 at the level of subsection. Nomenclatural changes were essentially limited to taxa occurring in North America (both native and introduced), leaving a number of glandular chenopods yet to be formally transferred to Dysphania.

The taxonomic and nomenclatural decisions treating glandular chenopods within an expanded *Dysphania* were further discussed in the Dr. Sci. dissertation of Mosyakin (2003). The genus *Dysphania* circumscribed so as to include all glandular taxa of *Chenopodium* has been accepted for the treatments of *Chenopodiaceae in Flora of North America north of Mexico* (Clemants & Mosyakin 2003) and *Flora of China* (Zhu Gelin, Mosyakin & Clemants 2003). At least one additional transfer of a species from *Chenopodium* to *Dysphania* (*D. pseudomultiflora* (Murr) Verloove & Lambinon) has been made (Verloove & Lambinon 2006) since then.

Here we validate new combinations in *Dysphania* for other species not transferred to that genus earlier. We refrain here from making specific conclusion on phylogenetic relationships within *Dysphania*. However, judging from a thorough analysis of relevant literature, our herbarium and field experience, studies of morphology and biogeography of glandular chenopods, we firmly believe that *Dysphania* in the new circumscription is a natural phylogenetic unit distinct from *Chenopodium* s.s. Since 2002 it was partly confirmed by molecular phylogenetic studies.

DISCUSSION

Results of recent molecular studies confirmed to some extent a deep phylogenetic split between at least three branches (clades) containing taxa previously traditionally placed in *Chenopodium* s.l. (Kaderet et al. 2003, 2005). Species of *Chenopodium* s.l. appeared scattered in three lineages informally named *Chenopodiaceae I, II, and III*. The segregation of species between these three clades mainly corresponded to recognized subgenera of *Chenopodium* s.l. (subgenera *Chenopodium*, *Blitum* (L.) I. Hiltunen, and *Ambrosia* A.J. Scott, respectively; see Scott, 1978). In particular, Kaderet et al. (2003, p. 976) indicated: “In *Chenopodiaceae III*, a close relationship of the Eurasian species *Chenopodium botrys* and *Teloxyx aristata*, and of the Australian species *Chenopodium cristatum* and *Dysphania glomerata*, is supported by the presence of multicellular glandular hairs (type 8 in Carolin 1983). By that character, they fit into subgenus *Ambrosia* (Scott 1978, Simón 1996). [...] These results confirm the proposal of Mosyakin and Clemants (2002) to transfer *Chenopodium subg. Ambrotrix* [sic] to *Dysphania* [...].” In a study of the origin and age of Australian Chenopodiaceae Kaderet et al. (2005, p. 74) indicated that “[r]ecently, Mosyakin and Clemants (2002) used morphological characters to separate subg. *Ambrosia* from *Chenopodium*, and included it in *Dysphania*. This last view is strongly supported by our results.”

Other options alternative to our wide circumscription of *Dysphania* would be to recognize several genera, for example, *Teloxyx* Moq. (including only *Chenopodium aristatum* L. = *T. aristata* (L.) Moq., or also other related taxa), *Roufiteria* Moq. (mainly an American group, which may be recognized either in the original sense of Moquin-Tandon (1834), or with addition of other American taxa), the Australian group previously placed in *Chenopodium* sect. *Orthesporum* R.Br., and Australian *Dysphania* in its traditional circumscription. These groups, corresponding mainly to sections in various classification schemes of *Chenopodium* s.l., seem to be natural. However, recognition of such groups as genera, at least at our present level of knowledge, has its negative aspects related to paraphyly or yet uncertain phylogenetic positions of many taxa. In our opinion, a slightly expanded circumscription of *Dysphania* (including related sect. *Orthesporum*, but excluding other non-Australian taxa) would be also inconvenient, because it will erase practically applicable morphological diagnostic characters distinguishing the resulting broader genus from other glandular taxa.

For avoiding such problems and for maintaining the nomenclatural stability we strongly prefer to place all glandular chenopods in *Dysphania*, which is characterized by its glandular trichomes and also by other morphological and biochemical characters extensively discussed in literature (Scott 1978; Carolin 1983; Wilson 1983; 1984; Palomino et al. 1990; Schwarzwäld 1993; Simón 1995, 1996; Bonzani et al. 2003 etc.).

In the present article we validate 21 new nomenclatural combinations at the species level resulting from the transfers of glandular-pubescent species to *Dysphania*. A moderately narrow species concept is applied, which is mainly consistent with prevalent taxonomic treatments of “glandular chenopods” and species of *Chenopodium* s.l. We admit that many species of the considered groups are in need of further revisions and more detailed studies, but that should not preclude making available new combinations in *Dysphania* for

VALIDATION OF THE NEW COMBINATIONS

Several names of putative hybrids between Australian taxa belonging to *Dysphania* sect. *Orthospora* were published (Aellen 1933, 1961; Wilson 1983, 1984). However, since their taxonomic status remains uncertain and their hybrid origin is mostly in need of confirmation, we refrain from making here any new combinations for hybrids.

The last species was described by Wilson (1983) from Western Australia as *C. saxatile*. The author of the species noted that "[s]uperficially this species would appear to be related to the 4-merous species in the genus *Dysphania* (e.g. *D. rhodostachya*) but in seed character it is obviously different, being very similar to *Chenopodium pusillum* and its allies of the section *Orthospora*. Yet even here its placement is uncertain since the other species of this section have flowers arranged in compact glomerules, have one stamen, and normally a 5-merous perianth." (Wilson 1983, p. 180). Wilson also compared his species with members of the *Chenopodium betrys* group (which evidently differ from *C. saxatile* in having 5-merous perianth and horizontal seeds) and section *Margaritaria* (which has whitish subglobose, as well as glandular, hairs, and some other distinctive characters, see Brenan 1956), and concluded that "it appears that *C. saxatile* does not fit satisfactorily into any of the presently recognized groups." P.G. Wilson refrained from describing a new monotypic section and instead expanded the circumscription of *Chenopodium* sect. *Orthospora* to include his species. Pending further research, we keep the species in *Dysphania* sect. *Orthospora*.

In our previous publications (Mosyakin & Clements 2002; Clements & Mosyakin 2003; Zhu Gelin et al. 2003) we mentioned that opinions vary widely regarding the proper species delimitation in this section, with some authors recognizing just a few species, including extremely polymorphic *Chenopodium ambrosioides* L. with infraspecific taxa, while other authors preferring several (up to 12) more narrowly circumscribed species (Aellen 1929, 1961, 1973; Aellen & Just 1943; Voroshilov 1942; Simón 1996, 1997; Giusti 1997). Sometimes the same author (notably Aellen) in different periods of his work was of differing opinions regarding the number of species related to *C. ambrosioides*. We believe that taxa in this group differ from each other not less than many generally recognized species of *Chenopodium* s.l. (subg. Chenopodium), especially in the *C. album* group. Numerous infraspecific entities were recognized in *C. ambrosioides* and some other variable taxa. In the present article we are concerned with the species-level taxonomy, and thus for the time being refrain from making any new infraspecific and infrageneric combinations.

Dysphania microcarpa (Phil.) Mosyakin & Cleman, comb. nov. Basionym: Roubieva microcarpa Phil., Anales Univ. Chile (Santiago), Mem. Cl. Linn. 9:1-42. 1895.

The name of this subsection within the genus Chenopodium is often incorrectly cited as a combination Chenopodium subsect. Botryis (W.D.J. Koch) Aellen & Iljin. Since the name published by Koch is illegitimate, the above subsectional name should be attributed to Aellen and Iljin, who provided its description only in Russian, but also included a reference to the earlier pre-1935 publication and description by Koch, which makes their subsection validly published.

This little-known Central Asian species morphologically resembles D. schraderiana in its habit, but differs in having weakly keeled perianth segments with simple non-glandular hairs at the keel (Uottila 1993, 1997).

Another species closely related to D. schraderiana was recently transferred from Chenopodium to Dysphania as D. pseudomultiflorum (Murr) Verloove & Lambinon (= Chenopodium foetidum Schrad. subsp. pseudomultiflorum Murr, C. schraderianum Schult. var. pseudomultiflorum (Murr) Aellen, C. pseudomultiflorum (Murr) Uottila) (Verloove & Lambinon 2006). Uottila (2001) indicated that this species of South African origin differs from
C. schraderianum in its more branched habit, leaves with more lobes and teeth, keeled but not cristate tepals with subsessile glands and long hairs, and smaller seeds.

5. Taxa yet unplaced in sections of *Dysphania*

This morphologically deviant species having 6-8 perianth segments (described from Coahuila, Mexico) was placed by Standley (1916) in a separate genus *Metomeria* Standley, and then transferred to *Chenopodium* sect. *Metomeria* (Standley) A.J. Scott (Scott 1978). Relationships of this little-known taxon with other representatives of *Dysphania* remain insufficiently known.

Dysphania congolana, an African species, was placed by Brenn (1956) in *Chenopodium* sect. *Margueritaria* Brenn, as *C. congolana*; later Simion (1996) added *D. minuta* to this section (as *C. minuta*).

ACKNOWLEDGMENTS

This article and our previous publications on *Dysphania* were initiated during our work on treatments of *Chenopodium* and *Dysphania* for the Flora of North America (FNA) and Flora of China (FC) projects, and during several visits of the first author to the Missouri Botanical Garden, St. Louis (MO) and the Brooklyn Botanic Garden, NY (BKL). The authors are grateful to the staff of these institutions and herbaria for their kind help and cooperation. Special thanks are due to colleagues involved in the FNA and FC projects (listed alphabetically): Ishan Al-Shebhaz (MO), Peter Hoch (MO), Nancy Morin (FNA, Point Arena, California), Peter Raven (MO), James Solomon (MO), Nicholas Turland (MO), and James Zarucchi (MO), who facilitated our research. We are also grateful to Thomas Borsch (Bonn, Germany), Helmut Freitag (Kassel, Germany), Gudrun Kaderett (Mainz, Germany), Aleksandr Sukhorukov (Moscow, Russia), Zoya Tsymbalyuk (Kiev, Ukraine), Pentti Uotila (Helsinki, Finland), and other colleagues with whom we discussed various issues related to taxonomy, morphology and geography of Chenopodiaceae. Thanks are due to Barney Lipscomb, Donald Pratt, and two anonymous reviewers for their valuable comments on the manuscript.

REFERENCES